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I Attorney Docket No. 82580 

2 

3 NONRESONÄNT TECHNIQUE FOR ESTIMATION OF THE MECHANICAL 

4 PROPERTIES OF VISCOELASTIC MATERIALS 

5 

6 STATEMENT OF GOVERNMENT INTEREST 

7 The invention described herein may be manufactured and used 

8 by or for the Government of the United States of America for 

9 governmental purposes without the payment of any royalties 

10 thereon or therefore. 

11 

12 BACKGROUND OF THE INVENTION 

13 (1)  Field of the Invention 

14 The present invention relates re a method for measuring 

15 mechanical characteristics of viscceiastic materials.  More 

16 particularly, this invention provides a method for measuring 

17 complex Young's modulus, complex shear modulus, and complex 

18 Poisson's ratio of a viscoelastic material formed as a rod. 

19 (2)  Description of the Prior Art 

20 Measuring Young's modulus and shear modulus of materials is 

important because these parameters significantly contribute to 

the static and dynamic response of a structure.  Resonant 

techniques have been used to identify and measure these moduli 

24 for many years.  These resonant methods are based on comparing 

25 the measured eigenvalues of a structure to predicted eigenvalues 

21 

22 

23 



1 from a model of the same structure.  The model of the structure 

2 must have well-defined (typically closed form) eigenvalues for 

3 this method to work.  Additionally, resonant techniques onlv 

4 allow measurements at natural frequencies. 

5 Comparison of analytical models to measured frequency 

6 response functions is another method used to estimate stiffness 

7 and loss parameters of a structure.  When the analytical model 

8 agrees with one or more frequency response functions, the 

9 parameters used to calculate the analytical model are considered 

10 accurate.  If the analytical model is formulated using a 

11 numerical method, a comparison of -he model to the data can be 

12 difficult due to dispersion properties of the materials. 

13 Methods also exist for measuring Young's modulus that 

14 require strain gages to be affixed to the rod.  The mounting cf 

15 strain cages normally requires that the gage be glued to the 

16 specimen, which locally stiffens the material.  For soft 

17 viscoelastic materials, this can have an adverse impact on the 

18 estimate of the loss and stiffness.  Another method for measuring 

19 stiffness and loss is by deforming the material and measuring the 

resistance to indentation.  This method can physically damage the 20 

21 specimen if the deformation causes plastic deformation. 

22 Prior art methods do not provide closed form, non-resonant 

23 techniques for measuring complex Young's modulus and complex 

24 shear mcaulus of a rod that contains a mass on the end when the 

25 end mass changes the dynamic response of the system.  This system 



1 typically arises when an end accelerometer is attached to a rod 

2 to measure the rod's response.  Frequently, the mass is large 

3 enough that it significantly changes the response of the rod. 

4 

5 SUMMARY OF THE INVENTION 

6 It is a general purpose and object of the present invention 

7 to provide a method that measures the material properties of a 

8 viscoelastic material. 

9 Yet another purpose of this invention is to provide a method 

10 for measuring the complex Young's modulus, complex shear modulus, 

11 and complex Poisson's ratio of a viscoelastic material. 

12 Still another requirement is that the invention must provide 

13 a method for measuring the complex Young's modulus and complex 

14 shear modulus of a material at a frequency other than the 

15 resonant frequency of the system. 

16 Accordingly, a method for estimating the real and imaginary 

17 Poisson's ratio of a specimen at an excitation frequency is 

18 provided.  The specimen is first joined to a reciprocating test 

19 apparatus at one end with a mass positioned at the other end. 

20 The test apparatus reciprocates at the excitation frequency and 

21 accelerations are recorded at each end of the specimen.  The 

22 Young's modulus is calculated by mathematical manipulation of the 

23 recorded accelerations.  The specimen is then joined to a 

reciprocating rotational test apparatus at one end with an 24 

25  rotational inertia positioned at the other end.  Accelerations 



1 are recorded upon subjecting the specimen to rotational 

2 reciprocations at the excitation .frequency.  The shear modulus is 

3 calculated from mathematical manipulations of these 

4 accelerations.  Poisson's ratio can be calculated from the 

5 Young's modulus and the shear modulus at the excitation 

6 . frequency.  All of the calculations may be performed giving both 

7 real and imaginary values. 

8 

9 BRIEF DESCRIPTION OF THE DRAWINGS 

10 A more complete understanding of the invention and manv cf 

11 the attendant advantages thereto will be readily appreciated as 

12 -he same becomes better understood by reference to the following 

13 detailed description when considered in conjunction with the 

14 accompanying drawings wherein: 

15 FIG. 1 shows apparatus for measurement of Young's modulus 

16 according to the current invention; 

17 FIG. 2 is a plot of the transfer functions ^(co) and T2(a>) 

18 versus frequency; 

19 FIG. 3 is a plot of the function s versus frequency; 

20 FIG. 4 is. a plot of real and imaginary Young's modulus 

21 values versus frequency. 

22 FIG. 5 shows the apparatus required for measurement of the 

23 shear modulus of the test specimen; 



' 

1 FIG. 6 is a plot of the transfer functions ^(co) and £.,(<») 

2 versus frequency; 

FIG. 7 is a plot of the function r versus frequency; 

4 FIG. 8 is a plot of real and imaginary shear modulus values 

5 versus frequency; and 

6 FIG. 9 is a plot of the estimated and actual values of 

7 

8 

9 

Poisson's ratio versus frequency for a simulation with no noise. 

DESCRIPTION OF THE PREFERRED EMBODIMENT 

10 FIG. 1 shows apparatus for measurement of Young's modulus 

11 according to the current invention.  One end of the test specimen 

12 red 10 is mounted to a mechanical shaker 12 and the other end of 

13 the rod 10 is mounted to a mass 14.  Shaker 12 has a shaker table 

14 1c for mounting of instrumentation.  Mass 14 is interchangeable' 

15 with a second mass having a different value.  An acceierometer 18 

16 is attached to the shaker table 16 which is mechanically joined 

17 to shaker 12.  A second acceierometer 20 is attached to mass 14. 

18 The measurement axis of both accelerometers 18 and 20 is in the x 

19 direction indicated by arrow 22.  Shaker 12 inputs energy into 

20 rod 10 in the form of linear translation which initiates a 

21 ccmpressional wave.  The speed and loss of this wave can be 

22 measured using the two accelerometers 18 and 20, and Young's 

23 modulus can be calculated from the result.  This measurement 

24 process is described below. 

25 The system model represents rod 10 attached to shaker table 

26 16 at ■/.  = 0 and mass 14 at •/.  =  L.     This mass 14 includes 

c 



1 . accelerometer 20 to measure the acceleration levels at the end of 

2 rod 10.  The linear second order wave equation modeling 

3 displacement in the rod 10 is 
4 

. d2u(x,t)    E d2u(xj) 

dt p ox 

7 where u(x,t) is the particle displacement at location x in meters 

8 and time t in seconds, p  is the density of the rod (kg/m3),,and E 

9 is the frequency dependent, complex Young's modulus of elasticity 

10 (N/nr ) which is unknown and is to be determined using this 

11 method.  The boundary at x =  0 is modeled as a fixed end with 

12 harmonic motion and is expressed as 

j 

14 y(0,/) = [/0exp(icDf)   , 2 

15 

16 where co  is the frequency of excitation (rad/s), U0   is the 

17 amplitude (m), and i is the square root of -1.  The boundary at x 

18 = L  is formulated by matching the force at the end of the roc 10 

19 to the force caused by mass 14 and is expressed as 

20 

21 AE
d^^ = -J^A   , 

ox dt2 

22 



1 where A  is the cross-sectional area (m:) of the rod 10 and m is 

2 the mass (kg) of mass 14 at the end of the rod 10. 

-n 
j Equation (1) can be rewritten in the spatial domain as 

4 

5 
d2!7(x,co)  2  ±T—L + k-U(x,(£>) = 0   , 

dx" 
(4) 

6 

7 where U(x,co)   is the temporal Fourier transform of the axial 

8 displacement and kE   is the complex compressional wavenumber 

9 (rad/m) and is equal to 

10 

,' ~ \ 11 kE = co/ \]E/ p    . 

12 

13 Similarly, equation (2) becomes 

14 

15 U(0,(o) = U0   , (6) 

16 

17 and equation (3) becomes 

18 

19 ACdU(L,(ü)         lTUT    , 
dx 

(7) 

20 

21 The solution to equation (4) is 

22 

23 U(x, co) = /?(co) cos(kf;x) + 5(0)) sin(kEx)   , 

7 

'3; 



1 where R  and S are wave propagation constants.  Applying boundary 

2 conditions (6) and (7) to equation (8), and writing the solution 

3 as a transfer function in the form of a ratio between the 

4 displacement at both ends, produces 

5 

C/(I,<o) 1 

cos(kEL) - \i(kEL) sin(kEL) 

8 ' where ju  is the ratio of the mass of the mass 14 to the rod 10 

9 mass and is equal to 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

u 
m 

M 

where M  is the mass of the rod 

M = pAL 

exDressed as 

The transfer function in equation (3) represents data and is 

a function of unknown wavenumber kE .     The inversion of two cf 

these transfer functions using different attached masses will 

allow the experimental data to be combined and yield a closed 

form solution of kE   and then E  as a function of to.     The 

theoretical form of these transfer functions is 

= 7](co) = 
cos(kEL) - j-i, (kEL) sm(k,..L) 

(12 



1 and 

2 

-> 1 
(13) J) 

cos(kEL) - u:(£fL)sin(Ä:£Z,) 

4 where the subscript 1 denotes the first attached mass and the 

5 subscript 2 denotes the second attached mass.  Writing equations 

6 (12) and (13) as a function of (kEL)sin(kEL)   and then equating them 

7 yields 

8 

9 cos(kEL) = J^-TM   =*   ,                            (14) 
7;r2(u:-u,) 

10 

11 where f is a complex quantity.  The inversion of equation (14) 

12 allows the complex wavenumber to be solved as a function of <p . 

13 This solution to the real part of kE   is 

14 

15 Re(££) = - 

1      , . nn 
— Arccos(s)-\ ,n even 
21        2Z 

(15) 

— Arccosf-sH ,n cad 
[2L                       2L 

16 

17 where 

18 

.? = [Re(<j>)]2+[Im((t> 19 )]2 -^([Re^)]2 +[Im(((,)]2}2 -{2[Re((j>)]2 - 2[Im(<j>)]2 -l} ,    (16) 

5 



1 n is a non-negative integer and the capital A denotes the 

2 principal value of the inverse cosine function.  The value of n 

3 is determined from the function s, which is a cosine function 

4 with respect to frequency.  At zero frequency, n  is 0.  Every 

5 time s cycles through K  radians (180 degrees), n  is increased by 

6 1.  When the solution to the real part of kE   is found, the 

7 solution to the imaginary part of kE   is then written as 

8 

9 ^.LvJ-m MSLA . (17) £      L      e[cos[Re(££)Z]    sin[Re(££)I]j 

10 

11 Once the real and imaginary parts cf wavenumber kE   are known, 

12 the complex valued rr.cdulus cf elasticity can he determined at 

13 each frequency with 

14 

15 E(co) = Re[£(co)] + iIm[£(co)] =     ^      . (18) 
[Re(££) + ilm(££)f 

16 

17 Equations (12) - (18) produce an estimate Young's modulus at 

18 every frequency in which a measurement is conducted. 

19 Numerical simulations have been conducted to determine the 

20 effectiveness of this method.  A baseline problem is defined with 

21 M  = 4.0 kg, m, =0.4 kg, m2   =1.2 kg, L  = 0.254 m, p  = 1200 

22 kg/m',   Re(£)   =   10H+105/    N/m2 ,   and  Im(£)   =   107+104/   N/m2   where   f 

10 



1 is frequency in Hertz.  Using these values, the mass ratios u, 

2 and |a, are computed to be 0.1 and 0.3, respectively.  FIG. 2 is 

3 a plot of the transfer functions r,(co) and T2(co)   versus frequency 

4 and corresponds to equations (12) and (13).  The top plot is the 

5 magnitude and the bottom plot is the phase angle.  The first 

6 transfer function was computed using an attached mass of 0.4 ka 

7 and is depicted with x's and the second transfer function was 

8 computed using an attached mass of 1.2 kg and is shown with o's. 

9 FIG. 3 is a plot of the function s versus frequency and 

10 corresponds to equation (16).  Note that although this function 

11 is a cosine with respect to frequency, the period is increasing 

12 as frequency increases.  Once the values of n  are known, the 

13 modulus values of E  can be determined using eouations (15) - 

14 (15). 

15 FIG. 4 is a plot cf real and imaginary Young's modulus 

16 values versus frequency.  The real (actual) values used to make 

17 the transfer functions are displayed as a solid line and the real 

18 (estimated) values are displayed as x's.  The imaginary 

19 (estimated) values are displayed as o's.  The estimated values 

20 agree at all frequency values with the actual values.  This is 

21 expected because there is no noise in the date and all the 

22 parameters used to make the transfer functions are used to 

23 calculate the modulus values.  No error is introduced when 

24 calculating the modulus from the transfer functions. 

11 
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1 FIG. 5 shows the apparatus required for measurement of the 

2 shear modulus of the test specimen.  A shaker 28 having a shaker 

table 30 is longitudinally connected to a stiff connecting rod 32 

4 that is connected to the edge of a large disc 34.  Large disc 34 

5 is mounted using a middle mounted pivot member 36 so that disc 34 

6 is free to rotate about its center point.  As shown pivot member 

7 36 suspends disc 34 from a fixed structure 38.  A test specimen 

8 40 is rigidly attached to the middle of this disc 34 in a manner 

9 so that when disc 34 is pushed by connecting rod 32, it initiates 

10 torsional (or rotational) response in test specimen 40.  The 

11 other end of test specimen 40 is attached to a second disc 42 

12 which acts as rotary inertia when the test is run.  Later in this 

13 measurement technique, this second disc 42 will be changed to 

14 another second disc having a different rotary inertia value sc 

15 tnat twc sets of experimental measurements can be recorded.  Two 

16 accelerometers are used.  A first accelerometer 44 is attached to 

17 the edge of first disc 34, and a second accelerometer 4 6 is 

18 attached to the edge of second disc 42.  The measurement axis of 

19 both accelerometers 44 and 46 is in the angular direction of the 

20 discs 34 and 42.  Although both accelerometers measure 

21 translation, these values can be converted into angular rotation 

22 by multiplying the recorded value by the distance from the center 

23 of the disc to the accelerometer for each accelerometer. 

24 In use, shaker 28 inputs energy via shaker table 30 into 

25 connecting rod 32 in the form of linear translation.  This rod 32 

12 



1 inputs the energy into first disc 34 which makes the disc rotate 

2 and initiates a shear wave in the test specimen 40.  The speed 

3 and loss of this wave can be calculated using measured data from 

4 the two accelerometers 44 and 46, and the shear modulus can be 

5 calculated from the result.  This measurement (estimation) 

6 process is extremely similar to the measurement of Young's 

7 modulus and is described below. 

8 The system model represents a cylindrical rod attached to a 

9 torsional shaker at x = 0 and a disc with rotary inertia at x = 

10 I.  This disc includes an accelerometer to measure the angular 

11 acceleration levels at the end of the disc.  The linear second 

12 order wave equation modeling angular rotation in the specimen 40 

13 is 

14 

c29(x,r) Gd2Q(xj)_n 

Of p   OX' 

16 

17 where 9(x,r) is the angular rotation at location x in meters and 

18 time t in seconds, p  is the density (kg/m3 ) of the specimen, and 

19 G  is the frequency dependent, complex shear modulus of elasticity 

20 ( N/m ) which is unknown and is to be determined using this 

21 method.  The boundary at x = 0 is modeled as a fixed end with 

22 harmonic angular motion and is expressed as 

23 

24 9(0,0 = ©0exp(io)0 , (20; 



« 

1 where co  is the frequency of excitation (rad/s), 0O is the 

2 amplitude (rad), and i is the square root of -1.  The boundary at 

-> x = L  is formulated by matching the angular force (torque) at the 

4 end of the specimen 40 to the rotary inertia of the second disc 

5 42 and is expressed as 

6 

7 
39(1,0   d2Q(L,t) Ü1

P     „  = J     a •>   /                             (21) 
ox                 dt~ 

8 

9 where /  is the polar moment of inertia of the cross-section of 

10 the specimen (m4 ) and J is the rotary inertia of the disc at the 

11 end of the bar (kgnr) .  For a cylindrical rod, the polar moment 

12 cf inertia is 

13 

14 T          K     4 

15 

16 where a  is the radius of the specimen in meters (m).  For a 

17 cylindrical disc, the rotary inertia is 

18 

19 r     {       2 J = -mr     .                                                                                                         (23) 

20 

21 where r is the radius of the disc in meters(m), and m  is the mass 

22 of the disc c kg) . 

14 



1       Equation (19) can be rewritten in the spatial domain as 

£^ + J#*r.«)«0 , ,24, 
dx~ 

5 where Q(.wco)   is the temporal Fourier transform of the axial 

6 displacement and kG   is the complex shear wavenumber (rad/m) and 

7 is equal to 

8 

9        k0=®ljGTp    . 

10 

11  Similarly, equation (20) becomes 

12 

13 0((Xcu) = 0o , 

14 

15      and  equation   (21)   becomes 

16 

d©(Z,co)     T , 

i=i) 

17 GIp      \ '   ' =M2Q{LM   . (27; 
dx 

18 

19      The   solution  to   equation   (24)    is 

20 

21 0fx,co) = A'(co)cos(/:f7x) + Z(cu)sin(^r;x)   , (28; 

22 where X  and Z are wave propagation constants.  Applying boundary 

23 conditions (26) and (27) to equation (28), and writing the 

15 
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1 solution as a transfer function in the form of a ratio between 

2 the rotation at both ends, produces 

4 
0(1, CO) 

©o 

1 
t (29) 

cos(kGL) - X(kGL)sin(kGL) 

5 

6 where Ä  is equal to 

7 

8 , 2J 
A = —— , 

a-M 
(30) 

9 

10 where M  is the mass of the specimen expressed as 

11 

12 M = pAL . : --, 

13 

14 The transfer function in equation (29) represents data and 

15 is a function of unknown wavenumber kG .     The inversion of two of 

16 these transfer functions using different attached rotary inertial 

17 masses will allow the experimental data to be combined and yield 

18 a closed form solution of kG   and then G  as a function of co.     The 

19 theoretical form of these transfer functions is 
20 

21 = Sl ((a) = 
^0 

1 
i (32) 

cos(kGL) - A., (k0L)sin(kGL) 

22 

23 and 

16 



0(1, Cü) 

0n 

= 52(CD) = 
cos(kGL) - X., (kGL)sin(kGL) 

.JJ 

3 where the subscript 1 denotes the first attached rotary inertial 

4 mass and the subscript 2 denotes the second attached rotary 

5 inertial mass.  Writing equations (32) and (33) as a function of 

6 (kGL)sm(kGL)   and then equating them yields 

7 

/;  r\   "J,/., — S.A. 
cos(kGL) =—==—^——— = cp , 

üiü-, (A,^ — A,, j 
(34) 

where <p is a complex quantity. The inversion of equation (34) 

allows the complex wavenumber to be solved as a function of cp . 

This solution to the real part of kG   is 

9 

10 

11 

12 

13 

14 

15 

16  where 

17 

Re(£c) = 

1 *    /• \ m;r 

— ArccosirH , m even 
21 2Z 

1  „        /   v   W^ — Arccos(-r)H , m oad 
121 21 

18 r = [Re(9)]2 +[Im(<p)]2 -^ReCcp)]2 +[Im((p)]2}2 -{2[Re((p)]2 -2[Im((p)]2 -l} ,   (36, 

19 m is a non-negative integer'and the capital A denotes the 

20 principal value of the inverse cosine function.  The value cf m 

17 



1 is determined from the function r, which is a cosine function 

2 with respect to frequency.  At zero frequency, m  is 0.  Every 

3 time s cycles through x  radians (180 degrees), in is increased by 

4 1.  When the solution to the real part of kG   is found, the 

5 solution to the imaginary part of kG   is then written as 

6 

to^itog/—5*S> **>>—]   . ,37, c      L     e\cos[Re(£G)Z]    sin[Re(ytc)I]J 

8 

9  Once the real and imaginary parts of wavenumber kG   are known, 

10 the complex valued modulus of elasticity can be determined at 

11 each frequency with 

13 G(co) = Re[G(co)] + iIm[G(co)]=     P°° 
[Re(kG) + ilm(kG)Y 

14 

15 Equations (IS) - (38) produce an estimate shear modulus at every 

16 frequency in which a measurement is conducted. 

17 Numerical simulations are conducted to determine the 

18 effectiveness of this method.  The baseline problem is also used 

19 in this section.  One additional parameter needed is the radius 

20 of the rotary inertial masses which is chosen to be 0.1016 m. 

21 Using the previous mass values the rotary inertia values of the 

22 masses are J, = 0.0021 kgm2 and J2  =  0.0062 kgm2 .  Using these 

13 



1 values, the ratios X, and A.-, are computed to be 0.247 and 0.741, 

2 respectively.  The shear modulus values used for the analysis are 

3 Re(G) = 3.58 xlO7 +3.43 xlO4/ N/m2, and Im(F) = 2.55 x 106+2.34 x 103/ 

4 N/m: where f  is frequency in Hertz.  FIG. 6 is a plot of the 

5 transfer functions ^(co) and 5;(co) versus frequency and 

6 corresponds to equations (32) and (33).  The top plot is the 

7 magnitude and the bottom plot is the phase angle.  The first 

8 transfer function was computed using an attached mass of 0.4 kg 

9 and is depicted with x's and the second transfer function was 

10 computed using an attached mass of 1.2 kg and is shown with o's. 

11 FIG. 7 is a plot of the function r versus frequency and 

12 corresponds to equation (36).  Note that although this function 

13 is a ccsine with rescect tc frecuer.cv, the oericd is increasir.c 

14 as frequency increases.  Values of m  versus frequency can be 

15 determined from the function r.  Once the values of m  are known, 

16 the modulus values of G  can be determined using equations (19) - 

17 (38).  FIG. 8 is a plot of real and imaginary shear modulus 

18 values versus frequency.  The real (actual) values used to make 

19 the transfer functions are displayed as a solid line and the real 

20 (estimated) values are displayed as x's.  The imaginary (actual) 

21 values used to make the transfer functions are also displayed as 

22 a solid line and the imaginary (estimated) values are displayed 

23 as o's.  The estimated values agree at all frequency values with 

24 the actual values.  This is expected because there is no noise in 

19 



1 the data and all the parameters used to make the transfer 

2 functions are used to calculate the modulus values, i.e., no 

3 error is introduced when calculating the modulus from the 

4 transfer functions. 

5 The estimation of Poisson's ratio is achieved by combining 

6 Young's modulus and shear modulus that were previously measured. 

7 This equation is 

8 

9 0J± 
J-G. 

10 

11 where u  is Poisson's ratio and is dimensionless.  The formulation 

12 in this method allows for Poisson's ratio to be a complex number, 

13 a_L~ncugr. typically z'r.e   imaginary part zz   z'r.is   number is very 

14 small cr zero.  FIG. S is a plot of zhe  estimated and actual 

15 values of Poisson's ratio versus frequency for a simulation wich 

16 no noise.  The estimated values of the real part of Poisson's 

17 ratio are depicted with x's and the actual values of the real 

18 part of Poisson's ratio are shown as a solid line.  The estimated 

19 values of the imaginary part of Poisson's ratio are depicted with 

20 o's and the actual values of the imaginary part of Poisson's 

21 ratio are shown as a solid line.  The estimated values agree at 

22 all frequency values with the actual values.  This is expected 

23 because there is no noise in the data and all the parameters used 

24 to make -.he transfer functions are used to calculate the moduli 

20 



1 values, i.e., no error is introduced when calculating the moduli 

2 from the transfer functions. 

3 The major advantage of this new method is that it measures 

4 Young's and shear moduli at every frequency that a transfer 

5 function measurement is made.  It does not depend on system 

6 resonances or curve fitting to transfer functions.  The 

7 calculation from transfer function measurement to calculation of 

8 moduli is exact, i.e., no error is introduced during this 

9 process.  Additionally, numerical simulations show that this 

10 method is extremely immune to noise introduced during the 

11 transfer function measurement.  The new feature introduced in 

12 this invention is the method to measure Young's and shear moduli 

13 exactly by affixing two different masses having different values 

14 :; a specimen in linear translation ana then again in angular 

15 rotation.  The transfer function data are collected on a spectrum 

16 analyzer and then passed to a computer where the above 

17 calculations are performed.  Once Young's modulus and shear 

18 modulus are determined, Poisson's ratio can be calculated. 

19 Obviously many modifications and variations of the present 

20 invention may become apparent in light of the above teachings. 

21 It light of the above, it is therefore understood that 

' ' the invention may be practiced 22 

23  otherwise than as specifically described. 

21 
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1 Attorney Docket No. 82580 

2 

3 NQNRESONANT TECHNIQUE FOR ESTIMATION OF THE MECHANICAL 

4 PROPERTIES OF VISCOELASTIC MATERIALS 

5 

6 ABSTRACT OF DISCLOSURE 

7 A method for estimating the real and imaginary Young's 

8 modulus, shear modulus and Poisson's ratio of a specimen at an 

9 excitation frequency.  The specimen is first joined to a 

10 reciprocating test apparatus at one end with a mass positioned at 

11 the other end.  The test: apparatus reciprocates at the excitation 

12 frequency and accelerations are recorded at each end of the 

13 specimen.  The Young's modulus is calculated from the recorded 

14 accelerations.  The specimen is then joined to a reciprocatinc 

15 rotational test apparatus at one end with a rotational inertial 

16 mass positioned at the other end.  Accelerations are recordec 

17 upon subjecting the specimen to rotational reciprocations at the 

18 excitation frequency.  The shear modulus is calculated from these 

19 accelerations.  Poisson's ration can be calculated from the 

20 Young's modulus and the shear modulus at the excitation 

frequency.  All of the calculations may be performed giving both 

22  real and imaginary values. 

d\^> 
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T1 and T2 Transfer Function Magnitude versus Frequency 
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